今天的题目是三数相加两件套

分别是

  • 三数之和

  • 最接近的三数之和

以下是题解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class Solution {
public:
vector<vector<int>> threeSum(vector<int> &nums) {
if (nums.size() < 3)
return {};
if (nums.size() == 3 && !(nums[0] + nums[1] + nums[2]))
return {nums};
sort(nums.begin(), nums.end());
vector<vector<int>> res{};
for (auto i = 0; i < nums.size(); ++i) {
auto req{nums[i]};
if (req > 0) break;
if (i > 0 && req == nums[i - 1])
continue;
auto l{i + 1};
auto r{nums.size() - 1};
while (l < r) {
auto left{nums[l]}, right{nums[r]};
auto sum{left + right + req};
if (!sum) {
res.push_back({req, left, right});
// 跳过一样的项, 确保返回的三元组不重复
do ++l;
while (l < r && nums[l] == left);
do --r;
while (l < r && nums[r] == right);
} else if (sum < 0)
++l;
else
--r;
}
}
return res;
}

int threeSumClosest(vector<int> &nums, int target) {
sort(nums.begin(), nums.end());
// 2, 3, 8, 9, 10 16
auto max{nums.size() - 1};
auto diff{numeric_limits<int>::max()};
auto res{diff};
for (auto i = 0; i < nums.size() - 2; ++i) {
auto req{nums[i]};
// 如果当前数字和上一个一样跳过
if (i > 0 && req == nums[i - 1])
continue;
// 检查可能的最大值
auto cur_max{req + nums[max] + nums[max - 1]};
if (cur_max < target) {
auto cur_diff{target - cur_max};
if (cur_diff < diff) {
diff = target - cur_max;
res = cur_max;
}
continue;
}
// 检查可能的最小值
auto cur_min{req + nums[i + 1] + nums[i + 2]};
if (cur_min > target) {
auto cur_diff{cur_min - target};
if (cur_diff < diff) {
res = cur_min;
}
break;
}
// 常规逼近查找
auto l{i + 1};
auto r{max};
while (l < r) {
auto left{nums[l]}, right{nums[r]};
auto sum{left + right + req};
if (sum == target) {
return sum;
}
if (sum < target) {
auto cur_diff{target - sum};
if (cur_diff < diff) {
diff = cur_diff;
res = sum;
}
++l;
}
if (sum > target) {
auto cur_diff{sum - target};
if (cur_diff < diff) {
diff = cur_diff;
res = sum;
}
--r;
}
}
}
return res;
}
};

主要思路就是有序序列下的逼近查找方案